The D₂ dopamine receptor gene as a determinant of reward deficiency syndrome

K Blum PhD¹, ⁴, ⁷, P J Sheridan PhD², R C Wood MPH³, E R Braverman MD⁴, ⁷, T J H Chen PhD⁵
J G Cull PhD⁶, ⁷, D E Comings MD⁷, ⁸

SUMMARY

The dopaminergic system, and in particular the dopamine D₂ receptor, has been profoundly implicated in reward mechanisms in the brain. Dysfunction of the D₂ dopamine receptors leads to aberrant substance seeking behaviour (alcohol, drug, tobacco, and food) and other related behaviours (pathological gambling, Tourette's syndrome, and attention deficit hyperactivity disorder). We propose that variants of the D₂ dopamine receptor gene are important common genetic determinants of the 'reward deficiency syndrome'.

INTRODUCTION

After the finding by our laboratories of a strong association between the A₁ allele of the D₂ dopamine receptor gene and alcoholism¹, several groups were unable to replicate the observation²–⁹. We have suggested two possible reasons—first, inadequate screening of controls for alcohol, drug, and tobacco abuse; and, second, sampling errors in terms of characterization of alcoholics for chronicity and severity of the disease.

Here we review the evidence that the D₂ dopamine receptor gene (DRD₂) is associated not only with alcoholism but also with a group of impulsive–addictive–compulsive disorders including polysubstance abuse, smoking, attention deficit hyperactivity disorder, obesity, and Tourette’s syndrome that we have termed ‘reward deficiency syndrome’¹⁰.

The dopaminergic system plays a major role in the brain-reward mechanisms, in that deficits in dopamine function result in abnormal drug and alcohol seeking behaviour¹¹. DA receptors are profoundly involved¹². The D₂ dopamine receptor gene, localized in the q22–q23 segment of chromosome 11, has multiple allelic forms (Table 1)¹³–¹⁶.

A strong correlation between variants of the dopamine D₂ receptor gene and alcoholism and polysubstance abuse (including crack/cocaine) has been reported by several investigators¹⁷,¹⁸,¹⁹,²⁰–²⁲.

In brain tissue obtained from patients carrying the A₁, B₁, and intron⁶-exon⁷ haplotypes of the DRD₂ gene dopamine D₂ receptor densities are low¹⁰,²⁵,²⁶. Similarly, DRD₂ densities have been found lower in alcohol-preferring rodents than in alcohol-non-preferring animals³¹–³³. Moreover, D₂ receptor agonists reduce, and D₂ receptor agonists increase, alcohol intake in alcohol-preferring rats³⁴.

LINKAGE VERSUS ASSOCIATION

Although several studies excluded linkage of the DRD₂ gene with alcoholism⁵,¹⁰,²³,²⁶, one group using affected sib-pair analyses found linkage with both heavy drinking and alcoholism²⁴. Further support for association comes from separate studies. In one, the A₁ allele was present in 69% of severe alcoholics¹ compared with 20% of controls. In another, the gene frequency of the A₁ allele of the DRD₂ gene in unclassified alcoholics was 0.27 compared with 0.07 in well-characterized non-alcoholic controls, a 3.85-fold risk in these probands²³. Moreover, a meta-analysis on all published exant studies related to alcoholism showed an odds ratio of 2.18 with a p-value of 10⁻⁷ indicating strong correlation of the DRD₂ gene with this disease³⁵,³⁶. Variants of the DRD₂ gene have been correlated with increased risk of severe alcoholism¹,¹⁷,²⁰–²²,²⁴, crack/cocaine dependence³⁸,³⁹, carbohydrate binging³⁹, obesity⁴⁰, attention deficit hyperactivity disorder⁴¹, Tourette’s syndrome⁴¹,⁴², pathological gambling⁴³, and smoking⁴⁴–⁴⁶.

Table 1 summarizes data for drug and alcohol seeking behaviour: in all reports chemical dependent subjects were
 identified who did not have the DRD2 allele or other variants, together with healthy non-drug-abusing individuals who had the A1 allele.47,9,10,17,18,25,28,38. Uhl and coworkers47 reported that the A1 and B1 alleles of the DRD2 gene account for 27% of the variance of drug dependence, independent of the environment or other gene defects, and data from twin studies indicate that genes influence up to 60% of the vulnerability to severe substance abuse.48. If these two findings are taken together, the DRD2 variants could represent one of the most important single-gene determinants of susceptibility to severe substance abuse. The consensus among researchers is that vulnerability to drug and alcohol seeking behaviour is polygenic in nature, the DRD2 genotype being one of the factors.49–52,59–61. We have used Bayes’ theorem as a mathematical method to evaluate the predictive value of the A1 allele of the DRD2 gene in impulsive–addictive–compulsive disorders.

Bayes’ theorem is widely used in medicine to predict the likelihood that a particular event (defect) will result in another event (disease)—here, for example, that possession of the A1 allele of DRD2 will cause abnormal drug and alcohol seeking behaviour (Table 2).

When a screening test is evaluated, sensitivity is the probability that the test will be positive in a person with the disease in question; and specificity is the probability that the test will be negative in a person who does not have the disease. For Bayes’ theorem we used the following formula:

\[
\text{Predictive value} = \frac{(\text{prevalence})(\text{sensitivity})}{(\text{prevalence})(\text{sensitivity}) + (1 - \text{prevalence})(1 - \text{specificity})}
\]

To calculate the specificity, we used well-characterized controls, screened for alcohol, drug, and tobacco use in some samples (Table 1). No previous study has used rigid exclusion criteria for controls, and such efforts are essential because alcoholism per se is not the true phenotype associated with DRD2 gene polymorphisms.10,23,41. Moreover, to calculate the sensitivity of genotyping, we took data from studies where the probands were characterized for chronicity or severity of disease (Table 2).

The positive predictive value (PV+) of a test is the percentage of positive results that are true positives when the test is applied to a population containing both healthy and diseased individuals.59. With the Taq1 A1 genotype, PV+ was 0.744 or 74%; in other words, positive predictive value was high; but PV− was only 0.548 or 54.8%. We would expect better negative predictive value in studies where individuals with related impulsive–addictive–compulsive

<table>
<thead>
<tr>
<th>Substance abuse</th>
<th>Allele</th>
<th>% Prevalence</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoholism</td>
<td>DRD2 A1</td>
<td>69</td>
<td>1</td>
</tr>
<tr>
<td>Alcoholism (less severe)</td>
<td>DRD2 A1</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>Alcoholism (less severe)</td>
<td>DRD2 B1</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>Alcoholism*</td>
<td>DRD2 C1</td>
<td>57</td>
<td>9</td>
</tr>
<tr>
<td>Severe alcoholism</td>
<td>DRD2 A1</td>
<td>47</td>
<td>17</td>
</tr>
<tr>
<td>Severe alcoholism</td>
<td>DRD2 B1</td>
<td>47</td>
<td>18</td>
</tr>
<tr>
<td>Severe alcoholism</td>
<td>DRD2 C1</td>
<td>13</td>
<td>18</td>
</tr>
</tbody>
</table>

* C1 allele denoted only with regard to homozygote genotype. Alcoholics (47/82); controls (29/87); (X2=9.8, df=1, P=0.002)

<table>
<thead>
<tr>
<th>Risk behaviour</th>
<th>Predictive value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcoholism (severe)</td>
<td>14.3</td>
</tr>
<tr>
<td>Cocaine dependence (severe)</td>
<td>12.3</td>
</tr>
<tr>
<td>Polysubstance abuse</td>
<td>12.8</td>
</tr>
<tr>
<td>Chemical dependency</td>
<td>28.3</td>
</tr>
<tr>
<td>Overeating (severe)</td>
<td>18.6</td>
</tr>
<tr>
<td>Ingestive behaviour</td>
<td>35.0</td>
</tr>
<tr>
<td>ADHD</td>
<td>16.0</td>
</tr>
<tr>
<td>Smoking</td>
<td>41.5</td>
</tr>
<tr>
<td>Pathological gambling</td>
<td>4.6</td>
</tr>
<tr>
<td>Tourette’s syndrome</td>
<td>5.5</td>
</tr>
<tr>
<td>Total impulsive–addictive–compulsive behaviour</td>
<td>74.4</td>
</tr>
</tbody>
</table>

The assumptions supporting the data are explained in Blum et al. Functional Neurology 1995 10:37–44

Table 2 The dopamine D2 receptor gene as a predictor of compulsive disease
behaviours are excluded from the control groups. Pooled data on patients with these disorders point to a strong positive correlation with the DRD2 gene variant (Yates $\chi^2=68.38$, $df=1$, $P<10^{-7}$).

DNA testing to predict high risk

Using logistic regression modelling, we found especially with cocaine dependent probands that the prevalence of the variants of the DRD2 gene increases with three factors—parental alcoholism; intake of potent drugs; and early deviant behaviour28. Of eight individuals with the three risk factors, seven had the A1 allele. A similar pattern was seen in obesity, the risk factors for prevalence of the A1 allele including parental obesity, adolescent or adult-onset of obesity, and carbohydrate binging: of 13 obese individuals with these three risk factors 11 had the A1 allele38. We also find that co-morbid substance abuse with obesity yielded a D2A1 allelic prevalence of 82%55.

In summary, there is now convincing cumulative evidence that certain variants of the DRD2 are associated with impulsive-addictive-compulsive disorders. Moreover, in the alcohol-naive sons of alcoholic fathers, presence of the A1 allele correlates with a neurophysiological feature—delayed latency of the P300 wave—that predicts drug and alcohol seeking behaviour56,57. The association was also present in a neuropsychiatric population58.

DRD2 seems to be a major gene in these disorders, with the larger role played by a combination of other genes (DRD4) and environmental factors46.

Lately Crabbe et al.59, working with animal models of alcohol and drug seeking behaviour, found evidence that several responses to alcohol (sensitivity to ataxia, tolerance to hypothermic and ataxia effects, preference drinking, and conditioned place preference) are influenced by loci in the middle portion of chromosome 9. In fact, four of the five traits showed their highest association with the same marker, CypA1, at 9:31. This strongly suggests that a single locus accounts for all these associations. Consumption of methamphetamine (in saccharin), methamphetamine-stimulated activity, and haloperidol-induced catalepsy also map to this region, and morphine-induced Straub tail maps nearby. Moreover, the ethanol-preference and haloperidol-catalepsy associations with markers near DRD2 have been verified in F2 mice with PCR genotyping. The potential importance of this synthetic approach is a cluster of ethanol, morphine, and cocaine responses mapping to chromosome 9. Finally, Crabbe et al. point out that, in the mouse, the DRD2 gene maps to chromosome 9. These findings in animals support our proposal that variants of the D2 dopamine receptor gene are important common genetic determinants of addictive behaviours.

Although several studies strongly support a genetic aetiology for severe alcoholism60, others point to the importance of environmental factors such as peer pressure, family, and socioeconomics61.

Since the DRD2 gene was found to be associated with various 'reward deficiency syndrome' behaviours (Table 1), we agree with Neiswanger's23 suggestion that alleles of the DRD2 gene associate with aberrant behavioural phenotype. An example of polygenic inheritance has been observed with attention deficit hyperactivity disorder (ADHD). Comings and associates62 found three dopaminergic genes—DRD2, dopamine β-hydroxylase, and the dopamine transporter—to associate individually with ADHD in patients originally diagnosed with Tourette's syndrome: those who inherited all three of the alleles in question had the highest ADHD scores, well into the clinical range, and those who inherited none of the three alleles had the lowest ADHD scores, well into the normal range. The results for conduct disorder and oppositional defiant disorder were particularly important because these conditions were so widely regarded as due entirely to environmental factors. There is further evidence of common genetic factors. Gittleman63 found a correlation between ADD and adult drug abuse and Comings et al.62,64 showed an intimate relationship between Tourette's syndrome and ADD: 50–80% of persons with Tourette's syndrome had ADD.

REWARD DEFICIENCY SYNDROME

The concept of a 'reward deficiency syndrome' unites addictive, impulsive, and compulsive behaviours and may explain how simple genetic anomalies give rise to complex aberrant behaviour. What are the possible therapeutic implications? Nishimura65 has reported that bromocriptine shortens the latency of the N200 wave in persons with long latency. Such N200 wave abnormalities occur in 'reward deficiency syndrome', and if bromocriptine or other D2 agonists can stabilize or shorten wave latency, they could have clinical value. In a double-blind study bromocriptine or a placebo was administered to alcoholics with either the A1 (A1/A1 and A1/A2 genotypes) or only the A2 (A2/A2) genotype allele of the DRD2 gene. The greatest improvement in craving and anxiety occurred in the bromocriptine-treated A1 alcoholics and attrition was highest in the placebo group A1 alcoholics. These findings raise the possibility of selection in treatment of alcoholics.

One important obstacle to treatment or rehabilitation in substance use disorders is denial, and we believe that a positive result of the 'reward deficiency syndrome' concept will be its aid in countering this reaction: as many as one out of every two individuals seeking treatment for a 'reward deficiency syndrome' disorder carry the A1 allele. For
prevention and early identification the test has a predictive value of only 74%. A time will come, however, when we have identified all the gene variants and we shall have a stronger DNA test for reward deficiency syndrome.

Acknowledgments We are grateful for the financial support of the PATH Foundation and for the generous contribution of Abraham Goldfarb and of Paul and Toni Nagito. We acknowledge the financial support of NeuRecovery International in the preparation of this manuscript.

REFERENCES

32. Stefanini E, Frau M, Garau MG, Garau B, Fadda F, Gessa GL. Alcohol-prefering rats have fewer dopamine D2 receptors in the limbic system. Alcohol Alcohol 1992;27(2):127–30

34. Dyr W, McBride WJ, Lumeng L, Li TK, Murphy JM. Effects of D1 and D2 dopamine receptor agents on ethanol consumption in the high-alcohol-drinking (HAD) line of rats. Alcohol 1993;10(3):207–12

42 Devor EJ. The D2 dopamine receptor and Tourette's syndrome. JAMA 1992;267:651

52 Cloninger CR. D2 dopamine receptor gene is associated but not linked with alcoholism. JAMA 1991;266(13):1832–3

(Accepted 12 December 1995)